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a b s t r a c t

This review is dedicated to summarizing the recent research on vortex dynamics and pinning effects in

superconducting films with artificial magnetic structures. The fabrication of hybrid superconducting/

magnetic systems is presented together with the wide variety of properties that arise from the

interaction between the superconducting vortex lattice and the artificial magnetic nanostructures.

Specifically, we review the role that the most important parameters in the vortex dynamics of films with

regular array of dots play. In particular, we discuss the phenomena that appear when the symmetry of a

regular dot array is distorted from regularity towards complete disorder including rectangular,

asymmetric, and aperiodic arrays. The interesting phenomena that appear include vortex-lattice

reconfigurations, anisotropic dynamics, channeling, and guided motion as well as ratchet effects. The

different regimes are summarized in a phase diagram indicating the transitions that take place as the

characteristic distances of the array are modified respect to the superconducting coherence length.

Future directions are sketched out indicating the vast open area of research in this field.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Vortex pinning in type-II superconductors has been studied for
a long time, both in conventional [1] and high-temperature
superconductors (HTSC) [2], to develop a fundamental under-
standing of flux dynamics and, for its relevance in applications
requiring enhancements of the critical current densities. Thus,
several types of artificial pinning centers have been introduced in
a controlled way in the superconductors; they usually consist of
imperfections in the superconductor arranged either randomly or
in ordered configurations. Among the randomly distributed
defects [3–5], cold work-induced dislocations [6], secondary-
phase precipitates [7], or heavy-ion radiation-induced defects [8]
exhibit suitable properties as pinning centers. Pinning effects by
ordered arrays of defects have been intensively studied for several
decades; first, with defects of lateral size in the micron range, like
arrays of holes [9], holes in superconducting networks [10], or
magnetic particles [11,12]. More recently, the development of new
lithography techniques has allowed the reduction of the size,
using submicron defects such as arrays of holes [13] or spatially
ll rights reserved.

+34 985102952.
modulated e-beam irradiation damage with electron [14] or ion
beams [15].

Vortex pinning by arrays of regular dots has relevance and may
serve as ideal model systems to other fields of physics including
vortex arrays in confined charged plasmas, epitaxial growth of
elastically soft materials deposited on top of a rigid lattice, a
variety of hybrid systems in which the proximity effect plays an
important role, etc. Moreover, the relevant physics length scales
are close to what can be artificially produced in the laboratory so
this allows studies in which matching effects between structural
and physics length scales occur. Since the array geometries can be
manipulated at will and with the wealth of existing super-
conductors this provides a very rich system in which varying
many of the relevant parameters allows to study the effect of
thermal fluctuations, commensuration issues, interactions be-
tween different types of vortices (for instance magnetic and
superconducting), etc. In addition, these systems provide the
means for the development of novel devices such as tunable
‘‘Josephson like’’ systems [16–18], can be used as a tool to modify
the field-dependent critical current of Josephson junctions
[19–21], allow the reduction of noise in SQUID-based devices
[22,23] and in microstrip band-pass filters [24], and open up the
avenue for the enhancement of critical currents and current
carrying capacity of superconducting cables and wires.

www.sciencedirect.com/science/journal/magma
www.elsevier.com/locate/jmmm
dx.doi.org/10.1016/j.jmmm.2008.06.013
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Fig. 1. Schematic of the rectangular array geometry indicating the definitions of

the lattice parameters a and b along the X and Y axes. Also indicated is the dot

diameter d and the different interdot separations sa and sb along a and b,

respectively. Note that a square array of dots is just a particular case of the

rectangular lattice with a ¼ b.
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A case of particular interest is the one based on super-
conducting films with ordered arrays of magnetic dots
with diameter of several hundreds of nanometers [25]. These
sizes are comparable to typical characteristic lengths of conven-
tional superconductors, such as the coherence length or
the London penetration depth [26]. Moreover, the magnetic
character of the dots can induce stronger pinning effects
than similar nonmagnetic pinning centers [27] by locally degrad-
ing superconductivity around the magnetic dot through the
magnetic proximity effects and stray fields (for a review on
superconducting-ferromagnet systems, see e.g. Ref. [28]). In
addition, large enough dot magnetization may create vortices in
the superconducting film [29]. This has resulted not only
in the observation of clear pinning effects when the vortex
lattice interacts with high symmetry arrays of magnetic dots
(triangular arrays [25,30], square [30,31] or kagomé [30] arrays),
but also produced a rich behavior of the vortex dynamics that
can be tuned by modifying the properties of the pinning
array. It should be pointed out that, in order to understand
vortex pinning with artificial arrays, it is necessary to consider
the role played by individual dot properties such as size
and/or magnetic state. In particular, the ability to tune in situ

the pinning potentials via changes of the magnetic configuration
presents a unique opportunity provided by magnetic pinning
centers.

The reduction of dot-array symmetry from six-fold (triangular)
or four-fold (square) to two-fold (rectangular [32]) results in a
number of novel phenomena for the vortex-lattice movement in
an anisotropic pinning potential. Further reduction of array
geometry from periodic to quasiperiodic arrays of magnetic dots
has also been realized with studies in two-dimensional (2D)
Fibonacci arrays [33], pentagonal fractal arrays [33] and five-fold
Penrose arrays of magnetized dots [34] yielding interesting
changes on vortex pinning properties related to the range of
correlations within the vortex lattice.

In addition, changes from circular to triangular shape of
individual dots may induce interesting ratchet effects, in which
a positive or negative rectification is obtained, depending on the
magnitude of the AC drive and/or the strength of the applied
magnetic field [35,36]. The vortex rectification can be further
modified by changing the magnetic state of triangular rings
[37,38].

This article is dedicated to review periodic pinning effects and
the changes that appear in vortex dynamics in superconducting
films with artificial magnetic structures composed mainly of
submicrometric arrays of magnetic dots. Special emphasis is given
to the role played by array symmetry and the relevant lengths and
sizes.

This review is organized as follows; first, the fabrication of the
magnetic nanostructures/superconducting films hybrids is de-
scribed. Second, vortex dynamics in films with regular (triangular
or square) arrays of magnetic dots are reviewed, indicating the
role of relevant parameters such as the order in the array,
magnetic character and sizes of the dots. Then, the new
phenomena found as the symmetry of the magnetic dot arrays
is distorted to become rectangular are discussed, including
reconfigurations in the vortex lattice, anisotropic vortex dynamics,
channelling and guided motion due to size effects. A phase
diagram for vortex pinning regimes is presented that summarizes
the transitions from one regime to another as the different
distances of the array are changed relative to the superconducting
coherence length. The consequences on the vortex dynamics
produced by further reduction in the array symmetry including
asymmetric and aperiodic pinning arrays are discussed. Finally,
the future outlook and a number of interesting novel directions
are outlined.
2. Fabrication of hybrid superconducting/magnetic
nanostructures

The fabrication of hybrid superconducting/magnetic nanos-
tructures for the study of periodic pinning effects usually relies on
nanolithography techniques [39] to define submicrometric peri-
odic arrays of pinning centers (i.e. of a size comparable with the
characteristic lengths l and x of the superconductor). One of
the most widely used techniques has been e-beam lithography,
because it allows control of array parameters (symmetry,
lattice parameter, and particle size) at the micron and submicron
length scales. In some cases, the magnetic nanostructure is
prepared first on top of a Si substrate and, then, a superconducting
film (usually Nb or Pb with a thickness in the range 10–100 nm) is
deposited on top [40–42], whereas in other cases the reverse
situation is preferred and the magnetic nanostructure is fabri-
cated on top of a flat superconducting film [43]. Also, Bitter
decoration technique and e-beam lithography have been used to
create triangular and square arrays of magnetic particles on top of
superconducting crystals (NbSe2 or Bi2Sr2CaCu2O8) [44–46].
Metallic replica masks have been used to fabricate arrays of
submicron Ni dots in high-temperature superconducting films
[47] in order to avoid possible degradation during the e-beam
lithography process.

Different materials have been used for the fabrication of the
magnetic nanostructures such as SmCo [11,48], Ni [25,49], Fe [50],
or Co [51] and, also perpendicular anisotropy Co/Pd and Co/Pt
multilayers [43,52].

Different array geometries have been used in the study of
periodic pinning, mainly composed of magnetic particles of size d

arranged in different symmetry arrays: (a) regular such as
periodic triangular, kagomé, or square, (b) distorted such as
periodic rectangular lattices, and even (c) aperiodic arrays such as
Fibonacci or Penrose lattices. In general, the most important
geometrical parameter is the lattice parameter (a for triangular
and square lattices or a� b for rectangular ones, see sketch in
Fig. 1) and the area of the unit cell of the array, S0.

The superconducting properties of the hybrid structures have
been characterized either by; transport measurements (magne-
toresistance, critical current and current voltage characteristics)
[25,53], DC magnetization [30,51], AC susceptibility [54], or
imaging techniques such as scanning Hall probe microscopy
[42] and Lorentz microscopy [15].
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3. Regular arrays of magnetic dots

3.1. Periodic pinning by regular arrays of weak pinning centers

In a uniform superconducting material, the minimum energy
for a vortex lattice created by a magnetic field B corresponds to a
triangular lattice of parameter

a0 ¼ 1:075ðF0=BÞ1=2

where F0 ¼ 2.07�10�7 G cm2 is the quantum of flux [26].
However, in the presence of a periodic array of defects, the vortex
lattice can adopt different highly ordered configurations to take
advantage of the periodic pinning potential when the number of
vortices per unit cell of the array nv ¼ BS0/F0 is an integer or a
fractional number [15,55,56]. This results in an enhanced pinning
between the vortex lattice and the array of defects when a
matching condition is fulfilled, giving rise to pronounced minima
in the dissipation that have been observed in different symmetry
regular arrays of magnetic dots, such as triangular [25,30],
kagome [30], or square [30,31]. Fig. 2 shows the magnetoresis-
tance r(B) at 0.99TC of a 100 nm thick Nb film grown on top of a
square array of Ni dots of lattice parameter a ¼ 400 nm and dot
diameter d ¼ 250 nm, measured with different values of the
applied transport current [53]. For a certain current range, clear
magnetoresistance minima appear at equidistant magnetic field
intervals, given by Bn ¼ n B1, where B1 ¼ 130 G is the so-called
‘‘first matching field’’. This closely corresponds to a single vortex
per unit cell nv ¼ B1a2/F0 ¼ 130 G� (400 nm)2/F0 ¼ 1.005.

Periodic pinning anomalies are also observed either as peaks or
plateaus in the critical current vs. field curves [30] and in the
magnetization curves close to TC51 both at integer and fractional
multiples of the matching field. At lower temperatures, this
periodic structure disappears. However, below approximately 4 K,
the presence of the periodic arrays of magnetic dots becomes
noticeable again as quasiperiodic instabilities (flux jumps) in the
isothermal magnetization curves of the superconducting thin
films [48,57]. Taking into account the gradient in vortex density
B (kGauss)
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Fig. 2. Voltage vs. field for a 100 nm thick Nb film with a square

(400 nm�400 nm) array of Ni dots at 0.99TC: A, J ¼ 104 A/cm2; B, J ¼ 7.5�103 A/

cm2; C, J ¼ 5�103 A/cm2; D, J ¼ 3.75�103 A/cm2; E, J ¼ 2.5�103 A/cm2; F,

J ¼ 1.25�103 A/cm2 (after Martin et al. [53]).
across the sample due to the critical state, these results suggest
that the matching between the vortex lattice and the periodic
array occurs essentially in ‘‘terraces’’ of matched vortex density
near the film edge.

The structure of the pinned vortex lattice depends on the
balance of pinning energy by the regular array of defects and
intervortex repulsion that favors a triangular lattice. The rich
vortex-lattice phase diagrams have been simulated using numer-
ical methods in square lattices of pinning centers [58], in which
many different vortex phases appear ranging from square-pinned
for strong pinning centers to distorted-triangular for weak
pinning centers [59].

It is interesting to note that controlled disorder in the dot
positions within the square array of Ni dots [60], conserves the
resistivity minimum at the first matching whereas the higher
order periodic pinning become gradually washed out, indicating
the relevance of interstitial pinning when there is more than one
vortex per dot.

The thickness range over which the periodic pinning potential
created by a square array of Fe dots fabricated on a Bi2Sr2CaCu2O8

single-crystal surface [50] can influence the structure of the
vortex lattice has also been studied by Bitter decoration
experiments on the top/bottom crystal surfaces. It was found
that the square distortion induced by the ordered pinning array
was only relevant for thicknesses below approximately 1mm,
which was close to the penetration depth at the measurement
temperature.

3.2. Ordered artificial vs. random intrinsic pinning centers

In general, the ordered magnetic dot array that produces the
periodic pinning potential competes with random defects present
in the sample that tend to disorder the vortex lattice. Thus, for
strong enough artificial pinning produced by the magnetic dot
array, both resistivity minima and critical current maxima are
observed [30,51]. In other cases, only resistivity minima might be
observed in an optimal current range, as is the case for the data of
Fig. 2 [25,53]. The current dependence of the matching effect is
due to the order in the dynamical phases produced by the driving
force magnitude and direction [61], which move the vortex lattice
in the presence of the periodic pinning potential. Thus, enhanced
matching in an optimal current range can be attributed to the
onset of quasi long range order in the vortex lattice in a range of
vortex velocities which promote the interaction with the periodic
pinning potential [62]. Another signature of this competition
between random and ordered pinning centers is that the periodic
resistivity minima (critical current maxima) generally appear at
temperatures close to the superconducting critical temperature
[25,30,48,49,51] where random pinning becomes weaker and
vortex mobility is higher.

An alternative way to study the interplay between ordered
artificial and random intrinsic pinning centers [44] is using
‘‘double decoration’’. In these experiments, first an almost
periodic triangular array of Fe particles is created on top of the
superconductor using Bitter decoration of the vortex lattice.
A second decoration is then used to observe the vortex lattice.
These results show that periodic pinning is much more effective
after dynamical order is induced in the vortex lattice [44,45].
Numerical simulations have also reproduced the experimentally
observed crossover from individual pinning by each Fe particle in
the strong pinning regime, to collective pinning only in the
ordered regions for weaker pinning forces [63].

Finally, for samples in which random and ordered pinning
potentials coexist, the vortex glass transition temperature is
enhanced at the matching fields and the critical exponents are
modified [64].
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3.3. Magnetic character of the pinning interaction

Qualitatively similar matching effects have been observed in
samples with arrays of nonmagnetic artificial pinning centers
such as thickness modulations [65], radiation defects [15],
antidots [13,66–69], blind holes [70], periodic corrugations [71],
and nonmagnetic metallic dots [49,72]. However, a comparison of
Ni with Ag dot [31,49] arrays of similar geometries shows a more
effective pinning for the samples with magnetic (Ni) dots. Fig. 3
shows the highest order matching minima in the r(B) curve, nmax,
as a function of dot diameter for several Nb samples with
(400 nm�400 nm) square arrays of Ni dots (solid symbols) or Ag
dots (open symbols) [49]. In all the cases, the maximum number
of matching minima is significantly larger in the samples with
magnetic dots.

Different mechanisms can account for the pinning interaction
between a ferromagnetic dot and a superconducting vortex
[29,73] such as by the local superconductivity suppression due
to the proximity effect (see Ref. [74]), and by the influence of the
dot stray field [75]. For example, for in-plane magnetized Ni dots,
the temperature dependence of the critical current can be
explained by a combination of the proximity effect and the
interaction between the vortex field and the magnetic moment of
the dot [53]. Calculations in the London limit of vortex interac-
tions either with dipoles [75–78], ferromagnetic columnar defects
[79] and uniformly magnetized dots [80–82] via the vortex
magnetic field have shown the relevance of the dot stray field as
a source of tunable magnetic pinning. In particular, it has been
shown [78] that the interaction energy between a superconduct-
ing vortex and a point dipole is given by — mbvac where m is the
magnetic moment and bvac is the magnetic field created by the
vortices at the dipole position.

This implies that the periodic pinning induced by magneto-
static interactions is strongly dependent on the dot magnetiza-
tion. Since typical matching fields for array lattice parameters in
the 1000–100 nm range are of the order of 100 Oe, smaller than
the fields needed to significantly alter the dot magnetization, the
pinning potential can be adjusted by preparing the remanent
configuration of the dot array following different demagnetization
0
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Fig. 3. Highest order nmax of observed matching peaks in the magnetoresistance

curves as a function of dot diameter for 100 nm thick Nb films with

(400 nm�400 nm) square arrays of: Ag dots (open symbols) or Ni dots (solid

symbols). Lines indicate the saturation number for an insulating inclusion of

diameter d for x ¼ 58 nm (corresponding to 0.98TC, solid line) and x ¼ 33 nm

(corresponding to 0.94TC, dashed line) (after Hoffmann et al. [49]).
processes above the superconductor critical temperature. For
example, an enhanced periodic pinning has been observed for
single domain as compared with multidomain dots for arrays of
rectangular-shaped Co dots with in plane magnetization [51,83].
Scanning Hall probe microscopy experiments in these arrays [42]
have shown that the vortices are attracted to a specific pole of the
single domain rectangular dots depending on the applied field
direction.

The pinning properties of arrays of Co and permalloy
circular dots whose aspect ratio favors the formation of the so-
called ‘‘magnetic vortex state’’ [84] have been recently investi-
gated. The ‘‘magnetic vortices’’ in the nanodots induce
several pinning mechanisms. First, the highly localized out-
of-plane stray field of the ‘‘magnetic vortex’’ core results in a
local suppression of superconductivity [85], which yields
enhanced periodic pinning [86]. Second, using appropriate
structures [225], dipolar magnetic interactions with ‘‘magnetic
vortices’’ become the governing pinning mechanism. This allows
to obtain a switchable pinning landscape, controllable via
the magnetic history [87], and gives raise to asymmetric pinning,
in a similar way as observed for systems with out-of-plane
anisotropy [30].

Experiments have also been performed in superconducting
films with arrays of triangular microloops, in which eight different
remanent domain configurations can be selected (six of
them polarized and two of them in the vortex state) [37,38]. In
this way, both the strength of the pinning potential (weak for the
low stray field flux-closure states and strong for the polarized
states) and the symmetry of the pinning potential can be tuned
in situ.

Out of plane magnetized dots produce asymmetric pinning,
which depends on the relative alignment between the dot
magnetic moment and the applied magnetic field that creates
the vortices in the superconductor [30,52]. Stronger maxima are
observed in the critical current for a parallel than for an
antiparallel alignment. In agreement with this, scanning Hall
probe microscopy shows that in the parallel case the vortices are
strongly pinned at the dots, whereas in the antiparallel one they
occupy weaker pinning interstitial positions [88]. Vortex dy-
namics simulations show that the pinning can be tuned from
asymmetric to symmetric by changing the order of magnetic
dipoles from ferromagnetic to antiferromagnetic [89,90]. Another
interesting effect that appears for strong enough dot magnetiza-
tion and/or large enough size is the nucleation of vortex–
antivortex pairs in the superconducting film [80–82,91–95] giving
rise to a variety of interesting phenomena. For small dot sizes,
multiquanta vortices occur, whereas for larger dots (radius above
6x) ordered configurations of single quantum vortices may appear
at each dot [82]. Also, the antivortices adopt interstitial positions
and crystallize into different kinds of regular lattices [96–99].
Moreover, the stray field created by an array of perpendicularly
magnetized dots can compensate the applied magnetic field and
selectively enhance the critical field of the superconducting thin
film for a given polarity [43,87,100,101]. This effect, which is also
linked to the creation of vortex–antivortex pairs, can be optimized
in situ by tuning the perpendicular magnetization of the dot array
[102,103]. Also, a maximum in the critical current for nonzero
applied field or field polarity dependent flux creep have been
reported [104].

3.4. Size effects: with dot diameter

Generally, the defect size plays an important role in the
periodic pinning as shown in Fig. 3. More minima appear in the
magnetoresistance (or maxima in the critical current) as the dot
diameter d increases, indicating an enhanced pinning [49].
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This is caused by the two parameters which increase with dot
size: the magnetic moment (proportional to dot volume) and area
pd2 (i.e. the area in the superconductor with reduced super-
conductivity due to the stray field or proximity effect). With
increasing moment, multiple flux quanta are induced by the
magnetic field of the dot [73,80], as mentioned above, and
with a larger area, more than one vortex is pinned at each defect,
as observed in superconducting films with arrays of antidots
[105–107]. The maximum number of vortices (‘‘saturation
number’’ ns) pinned by an insulating inclusion of diameter
d is given by [108] ns ¼ d/4x(T), where x(T) is the superconducting
coherence length. Fig. 3 shows ns calculated for x ¼ 58 and
33 nm (solid and dashed lines), the limiting values of the
coherence length for the temperature ranges included in this
figure. However, the number of matching peaks in the magne-
toresistance of Nb films with arrays of magnetic dots usually
exceeds considerably this saturation number [49], indicating
that, in the higher order matching fields, multiple strongly pinned
vortices at the magnetic dots coexist with weakly pinned
interstitial ones [66,105,109,110]. Molecular dynamics simulations
in the London limit [111] show that, the critical current
peaks (minima in the magnetoresistance curves) are of similar
magnitude at different matching fields for multivortex pinning,
whereas for individual vortex pinning a sharp drop in the critical
current at the matching conditions occurs once interstitial
vortices appear in the superconductor. Another signature
of the coexistence of strongly pinned vortices at the periodic
defects with weakly pinned interstitial vortices at the higher
matching fields, is a change in the I– V curve shapes, with an
enhanced dissipation at low currents due to the motion of
interstitial vortices and a kink at higher currents when the
vortices at the periodic pinning centers become depinned [112].
These two effects allow discriminating experimentally between
individual and multiple vortex pinning at the higher matching
fields [49].

3.5. Size effects: interdot separation

Another important geometrical parameter changing with dot
diameter is the dot edge-to-edge separation s ¼ a�d. Fig. 4 shows
a comparison between two samples with (600 nm�600 nm)
arrays of dots but different dot size: d ¼ 400 nm (upper curve) and
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Fig. 4. Magnetoresistance curves for 100 nm thick Nb films with

(600 nm�600 nm) square arrays of Ni dots with dot diameter d ¼ 400 nm (top

curve) and d ¼ 530 nm (bottom curve). The curve for the 400-nm Ni dots is shifted

by a factor of 10 for clarity (after Hoffmann et al. [49]).
530 nm (lower curve) [49] Although the dot diameter is only 25%
larger in the lower curve, the number of minima has increased
from 3 to 35. On the other hand, the dot separation has decreased
considerably from s ¼ 200 nm (upper curve) to 70 nm (lower
curve). This is comparable to the superconducting coherence
length x(T)�60 nm, i.e. of the order of dot separation in the
lower curve. In fact, independent measurements in samples with
similar sized dots d but different separation s (i.e. different square
lattice parameter a) unambiguously show [49] a crossover in the
pinning behavior when the edge-to-edge distance becomes
comparable to the superconducting coherence length. In this
case, the number of resistivity minima is greatly enhanced,
maxima appear in the critical current that were not present in
the weak pinning regime and the resistivity anomalies at
matching Dr/r become a monotonous decreasingly function of
current and field.

For small magnetic dot separation, the pinning potential wells
overlap, so that the distances between the magnetic dots are too
small to accommodate a vortex. Thus, the sample no longer
behaves as a continuous film with a periodic array of pinning
centers, but more like a superconducting wire network [113], and
the magnetoresistance minima are caused by periodic quantiza-
tion similar to the Little-Parks oscillations [113,114]. This is also
found in superconducting films with antidot lattices when the
interhole distance becomes comparable to x(T) [105,115]. Further-
more, this crossover has been theoretically studied using non-
linear Ginzburg–Landau theory [116].

3.6. Magnetic antidots

The limiting case for decreasing dot separation corresponds
to s ¼ 0, when the magnetic dots physically touch. This
limit corresponds to a qualitative change in the magnetic
nanostructure, which instead of being composed of individual
magnetic dots, becomes a continuous magnetic film with an
array of holes or ‘‘antidots’’. In these patterned magnetic films,
periodic magnetic closure domains appear with domain walls
pinned at the antidots and governed by the array geometry
[117–120]. Vortex pinning may arise due to the stray field
produced by the domain structure in the magnetic material, as
observed in continuous superconducting/ferromagnet bilayers
[74,121–123].

Two different types of experiments were performed regarding
this kind of systems: in the first [124,125], a superconducting Pb
film was deposited on top of a perpendicular anisotropy Co/Pt
multilayer with a square array of antidots. The magnetization
curves of the superconducting film show periodic pinning effects
after the magnetic film has been magnetized out of plane so that
the stray field pattern (measured by magnetic force microscopy) is
localized at the antidots. This periodic pinning is strongly
asymmetric with respect to the field polarity, similarly to the
arrays of out-of-plane magnetized dots [30,52]. Furthermore,
matching is considerably reduced in the demagnetized state of the
Co/Pt multilayer that presents an irregular domain structure [125]
indicating a predominantly magnetic contribution to the pinning
potential.

A second class of experiments corresponds to a superconduct-
ing film deposited on top of a nanostructured Co film with strong
in-plane anisotropy [126,127]. In this case, no matching effects
were observed in the magnetization curves of the superconduct-
ing layer, but only an overall enhancement of the critical current
after the sample was magnetized along an in-plane easy axis in
comparison with the demagnetized state. This effect was
attributed to pinning of the vortex lattice by the network of
domain walls emanating from the antidots, instead of the
periodically arranged antidots.
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4. Distorted arrays of magnetic dots: rectangular

4.1. Vortex-lattice reconfiguration

As discussed in the previous section, one of the first
observations in the study of pinning effects by periodic arrays of
pinning centers was that a square array of pinning centers is able
to stabilize a square vortex lattice [15], although the preferred
vortex configuration in a homogeneous superconducting film
would be a triangular lattice induced by the inter-vortex repulsive
interactions [26]. The vortex lattice is very sensitive to perturba-
tions and many different vortex phases have been described
[2,128] depending on the balance between different energy terms
such as the pinning potential landscape, vortex-lattice elastic
energy, thermal fluctuations and driving force. For a square array
of pinning centers for example, the transition between square and
distorted triangular vortex-lattice phases has been theoretically
studied as a function of the strength of the periodic pinning
potential [59].

For lower symmetry pinning arrays, such as rectangular arrays
of circular magnetic dots, the balance between elastic and pinning
energies has a more profound impact on the magnetotransport
properties of the superconducting film. Fig. 5 shows r vs. B for a
Nb film with a 400 nm�625 nm rectangular array of Ni dots [32]
at 0.97TC with the transport current applied parallel to the long
side of the rectangular array cell. Periodic dissipation minima
appear, in a similar way as in samples with square arrays of
pinning centers but, in this case, two different field regimes can be
clearly identified. At low fields, the minima are sharp with spacing
DBlow ¼ 81 G, that corresponds well with the matching field
calculated for a rectangular vortex lattice with one vortex per
array cell B1

rect
¼ F0/ab ¼ 83 G. However, at high fields (beyond

approximately 300 G), the dissipation minima become broader
and their spacing increases to DBhigh ¼ 112 G, which is close to the
matching field of a square vortex lattice of parameter a ¼ 400 nm,
B1

sq
¼ F0/a2

¼ 129 G. Thus, at low fields, the vortex lattice is
distorted by the strong pinning potential into a rectangular
configuration that matches the Ni dot rectangular array a� b cell,
whereas at high fields vortex–vortex interactions become domi-
nant and there is a reconfiguration transition in the vortex lattice,
which adopts a more symmetric square configuration that is only
matched along the short side of the rectangular array cell a

corresponding to the direction of vortex motion.
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Fig. 5. Magnetoresistance curve for a 100 nm thick Nb film with a

(400 nm�625 nm) rectangular array of Ni dots at 0.97TC and J ¼ 2.5�104 A/cm2.

Also shown is a schematic of the current configuration with respect to the dot

array (after Martin et al. [32]).
The equilibrium vortex-lattice configurations, induced by the
interaction with a rectangular array of pinning centers with
b/a ¼ 2, have been theoretically studied [129] for logarithmically
interacting Pearl vortices for up to nine vortices per unit cell of the
array. At low fields, the vortex configurations present rectangular
symmetry (for the first two matching fields), and as the vortex
density increases different, more symmetric lattices are stabilized
(square, distorted triangular, and disordered). This gives rise to a
crossover in the pinning behavior described in terms of the critical
current anisotropy and the sharpness of the matching peaks [129].

The vortex-lattice ground states have also been analyzed using
geometrical arguments (maximizing the shortest intervortex dis-
tance in order to minimize the intervortex repulsive interactions)
for different values of the rectangular array aspect ratio b/a [130].
Ordered configurations are found not only for integer matching
fields, but also for fractional fillings of the rectangular array unit
cell, in agreement with the experimental observation [131].

Besides the differences in matching fields, there are several
other changes in the magnetotransport properties at the reconfi-
guration transition: at low fields, r(B) is almost independent of
the measurement current [32] and matching peaks are also
observed in the critical current [53]; however, at high fields,
periodic pinning is only observed in an optimal current range,
indicating that dynamic ordering in the vortex lattice is much
more important in this second regime [32]. Also, at low fields, the
angular dependence of the magnetoresistance curves can be
simply scaled using the normal component of the magnetic field,
whereas dissipation increases significantly as the field deviates
from the film normal in the high-field regime [131].

The location of the crossover field between the low- and high-
field regimes has been found to be weakly temperature dependent
[53] and there is weak hysteresis depending on the direction of
the field ramp [131]. In a first approximation, the field position of
the reconfiguration transition can be estimated in terms of the
balance between the extra elastic energy DEel stored in the
rectangular vortex lattice and the pinning energy gained by
perfect matching DEP ¼ eP/ab. This provides an estimate of the
pinning energy per Ni dot in a 100 nm thick Nb fil, eP ¼ 10�12 erg
[32]. This energy is close to the superconducting condensation
energy in the volume just above the Ni dot, indicating that
destruction of superconductivity by the proximity effect plays a
major role [132].

A similar reconfiguration transition from low-field rectangular
vortex lattice to high-field square has been observed in Nb films
grown on a Si substrate with a rectangular array of indentations
[133] (i.e. nonmagnetic artificial defects). However, in this case, the
reconfiguration field was significantly smaller than in a sample
with a rectangular array of Ni dots of similar geometrical
dimensions. This indicates again a reinforced pinning in the case
of the magnetic dots in comparison with nonmagnetic defects
[133], in good agreement with the observations in samples
with square arrays of dots [49]. Also, the reconfiguration transition
has been analyzed in Nb samples with rectangular arrays of
30 nm thick Ni dots covered with a variable thickness Ag layer
(0–9.5 nm) [134]. In this way, both the corrugation induced by the
Ni dot array and the interfacial proximity effect between the
magnetic material and the Nb film could be varied. However,
the presence of the Ag layer was found to have very little effect on
the periodic pinning [134] implying that the pinning has an
important magnetic contribution, although corrugation effects are
substantial.

4.2. Anisotropy in the current direction

Besides the reconfiguration transition, the anisotropy in the
periodic pinning as a function of the direction of motion of the
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vortex lattice relative to the array may play an important role. This
anisotropy can be controlled by the applied transport current J
that induces a Lorentz force on the vortex lattice given by
FL ¼ J�B. For a magnetic field perpendicular to the sample plane
(i.e. along z) FL is always in the sample plane, at right angles to the
transport current. In magnetotransport measurements the applied
current direction is defined by the Nb bridge geometry. In a
number of experiments, the relative angle between the applied
current and the rectangular array is varied changing the shape of
the Nb bridge [135–137]. For example, Fig. 6(a) shows a cross-
shaped measurement bridge [136,138] that allows varying in a
continuous fashion the angle y between the Lorentz force and the
short side of the array cell from 01 to 901 (see sketch in Fig. 6(b)).
This is accomplished by the combination of applied currents along
a and b (Ja and Jb respectively). Also indicated in Fig. 6(b) is the
angle a that defines the direction of motion of the vortex lattice
relative to the rectangular cell. In order to fix the notation, in the
discussion below b4a will always be assumed.

Fig. 7 shows the magnetoresistance of a Nb film on top of a
400 nm�500 nm rectangular array of Ni dots with the transport
current along the long and short sides of the rectangular array cell
(i.e. y ¼ 01, solid symbols and y ¼ 901, open symbols) [139]. The
same matching field is found in both directions caused by the
commensuration condition of one vortex per unit cell, as shown
previously. However, a clear anisotropy appears in the background
dissipation at low fields (i.e. away from the matching conditions):
the resistivity is much lower for y ¼ 901, i.e. when the vortex
lattice moves along the long side of the array cell, than for y ¼ 01,
i.e. when the vortex lattice moves along the short side of the
array cell.

This behavior has been predicted [129] by numerical simula-
tions that indicate that a rectangular array of pinning centers
induces an easy direction of motion for the vortex lattice along the
short side of the array cell. In this case, there is a clear signature of
the periodic pinning. On the other hand, for vortex motion along
the long side, the pinning force is higher both at matching and
elsewhere. Since in this case the pinning values are similar this
results in the overall reduction of dissipation, together with less
pronounced matching effects as observed in Fig. 7.

A similar critical current anisotropy was observed in magne-
tooptical images of the flux penetration in Nb and YBa2Cu3O7

films with a rectangular array of antidots [140,141]. In these
experiments, vortices are found to penetrate preferentially in the
sample along the antidot rows, i.e. along the short side of the
antidot array a. Thus, an anisotropic critical state is established,
a

b
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Fig. 6. (a) Micrograph of a cross-shaped Nb measurement bridge that allows to

control the transport current direction. The shaded area represents the

90�90mm2 array of dots. (b) Definition of angles y and a for the Lorentz force

and vortex velocity directions relative to array axes (after Villegas et al. [138]).
which is characterized by a lower critical current along a than
along b.

4.3. Size effects in rectangular lattices: the channelling regime

As found earlier for the square arrays of magnetic dots, a
change in pinning can be expected when the dot size is increased,
so that interdot separation becomes comparable with the super-
conducting coherence length and the potential wells produced by
individual dots start to overlap. However, in rectangular arrays of
circular dots, interdot separation along a and along b will be very
different so that this overlap of potential wells occurs first only
along a, the short side of the array cell.

Fig. 8 shows r(B) for a Nb film with a 350 nm�500 nm array of
Ni dots of diameter d ¼ 230 nm and interdot separations
sa ¼ 120 nm and sb ¼ 270 nm at T ¼ 0.99TC for two perpendicular
directions of vortex motion: y ¼ 01, Fig. 8(a) and y ¼ 901, Fig. 8(b)
[135]. At this temperature, the coherence length estimated
from the temperature dependence of the upper critical field
x ¼ 114 nm, close to sa. Once again, the overall resistivity values
are an order of magnitude lower for y ¼ 901 than for y ¼ 01 but,
now, the spacing between minima also changes with the vortex
motion direction. In Fig. 8(a), the matching field is B0�

1 ¼ 120 G,
which agrees very well with the calculated value for one vortex
per unit cell of the rectangular array B1

rect
¼ F0/ab ¼ 118 G.

However, r(B) in Fig. 8(b) shows matching fields at B90�

1 ¼ 185 G
that corresponds to the matching field a triangular vortex lattice
of parameter 360 nm, B1

triang
¼ (4/3)1/2 F0/a2.

This anisotropy in matching conditions (Fig. 7) cannot be
understood in terms pinning by a rectangular array of weak
pinning centers [129], because these would give similar matching
fields for both current directions. When the distance sa between
individual dots along a becomes comparable to x, the pinning
landscape consists of deep channels slightly modulated with a
period a and spaced at a distance b [135] For motion along the
potential channels (y ¼ 01), the vortex-lattice orders in one-
dimensional (1D) lines inside the channels and matching effects
appear when the vortices in each line match the small modulation
of period a. This results in the same matching field B1

rect
¼ F0/ab as

for a rectangular array of weak pinning centers. However, the
reconfiguration transition would not be produced by a channelled
landscape and indeed, has not been observed experimentally in
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samples with small sa. On the other hand, the vortex correlations,
for motion in the hard direction across the channels (y ¼ 901), are
hindered by disorder whereas transverse order persists [128,142].
A similar loss in longitudinal order with persistence of long-range
transverse order was also found in numerical simulations for
periodic potentials [143]. Thus, for y ¼ 901, periodic pinning is
Fig. 8. Magnetoresistance curves for a 100 nm thick Nb film with a

(350 nm�500 nm) rectangular array of Ni dots of diameter d ¼ 230 nm and

interdot separations sa ¼ 120 nm and sb ¼ 270 nm measured at T ¼ 0.99TC with

J ¼ 3.7�103 A cm�2 for two perpendicular Lorentz force directions: (a) y ¼ 01; (b)

y ¼ 901 (after Vélez
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Fig. 9. (a) Vortex-lattice direction of motion a ¼ arctag(vb/va) as a function of the di

rectangular array of Ni dots at T ¼ 0.99TC, B ¼ 84 G (first matching field) and FL ¼ 1.3�10

T ¼ 0.995TC, B ¼ 82 G (first matching field) and FL ¼ 5.17�10�7 N/m. (b) Vortex-lattice

451, 601, 751, 851, and 901 (from bottom to top) for a Nb film with a (400 nm�625 nm

Villegas et al. [138]).
observed when the density of vortices inside each channel
matches the lattice parameter of the Ni dot array perpendicular
to the motion (i.e. along a in this case).

4.4. Guided vortex motion by the anisotropic pinning landscape

Generally, periodic pinning arrays exhibit anisotropy in the
pinning landscape with easy and hard directions for vortex
motion connected to the symmetry directions of the array.
Theoretical work on different systems with square pinning
potentials [61,144–146] has shown the possibility of guided vortex
motion along the principal axes and diagonals of the arrays. This
effect has been observed experimentally in a limited angular
range for superconducting films with square arrays of antidotes
[147]. Thus, rectangular arrays of magnetic dots combining a
strong pinning potential with low array symmetry provide an
ideal system for the study of guided vortex motion with artificial
mesoscopic pinning potentials [136,138].

The magnetoresistance for different applied current directions
relative to the array cell (i.e. angle y of the Lorentz force) shows a
strong guiding effect [136]. The vortex motion is essentially
confined along the short side of the array cell in a wide angular
range from y ¼ 01 to 851. Fig. 9(a) [138] shows the angle a, the
vortex-lattice direction of motion, as a function of the applied
driving force direction y for a Nb film with a 400 nm�625 nm
rectangular array of Ni dots (solid symbols) measured at the first
matching field. The data for a Nb film with a 500 nm�500 nm
square array of Ni dots (open symbols) is also shown for
comparison. For the square array, the vortex lattice moves
essentially parallel to the applied driving force (i.e. aEy). This
can be attributed to the existence of two equivalent easy flow
paths along the two sides of the square array. This way the
vortices can follow the driving force direction moving in a
staircase fashion switching from one easy path to the other. On
the other hand, for the rectangular array, the motion direction is
locked close to a ¼ 01 almost up to y ¼ 801 and it only becomes
parallel to the driving force for y ¼ 901.

Hall effect measurements in samples with rectangular arrays of
Ni dots have also shown evidence for guided vortex motion [137] in
a wide angular range. Moreover, the analysis of flux penetration in
superconducting films with rectangular arrays of holes indicates
that vortices are guided by the antidot array, so that vortex motion
in the critical state occurs only along either a or b, depending on
which is closest to the Lorentz force direction [141].

The guided motion of the vortex lattice by a rectangular array
of pinning centers can be characterized in terms of a transverse
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depinning force. This is illustrated by a plot [Fig. 9(b)] of a as a
function of vortex velocity v for different applied driving force
directions y derived from current voltage characteristics at the
second matching field for a Nb film with a 400 nm�625 nm
rectangular array of Ni dots [138]. Three regimes are found for
each curve: for low velocities, the vortex motion is guided along
the channels in the pinning landscape (a ¼ 01); for intermediate
drives the vortex lattice starts to depin in the transverse direction
and a rotates towards y and, finally, for large drives, the vortex
lattice moves parallel to the driving force (i.e. aEy). The
transitions between these different regimes are governed by the
dynamical evolution of order in the vortex lattice as a function of
driving velocity.

4.5. Matching effects by periodic arrays of magnetic lines

As dot size increases beyond d ¼ a, when the interdot
separation along this side of the array vanishes, the magnetic
dots touch and the rectangular array of pinning centers becomes a
periodic array of magnetic lines. Thus the pinning potential
changes from a 2D anisotropic landscape (in the case of
rectangular arrays) to a set of equally spaced 1D channels.

Fig. 10 shows the magnetoresistance of a Nb film covering an
array of Ni lines with period b ¼ 500 nm and width d ¼ 200 nm
[148]. Fig. 10(a) corresponds to vortex motion perpendicular to the
lines (i.e. y ¼ 901) and Fig. 10(b) to vortex motion along the lines
direction (i.e. y ¼ 01). The overall resistivity anisotropy is similar to
the case of rectangular arrays of Ni dots (Figs. 7 and 8) with a much
lower dissipation for y ¼ 901 than for y ¼ 01, which can be
attributed to the anisotropy in the channelled pinning landscape.
Similarly, the critical current is found to be much larger for y ¼ 901
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Fig. 10. Magnetoresistance curves for a Nb film with an array of 200 nm wide Ni

lines with period b ¼ 500 nm at T ¼ 0.94 TC: (a) Lorentz force perpendicular to the

lines (y ¼ 901): (1) J ¼ 2.2�105 A/cm2; (2) J ¼ 1.2�105 A/cm2; (3) J ¼ 8.7�104 A/

cm2; (4) J ¼ 5�104 A/cm2; and (5) J ¼ 2.5�104 A/cm2. (b) Lorentz force parallel to

the lines (y ¼ 01): (1) J ¼ 5�104 A/cm2; (2) J ¼ 2.5�104 A/cm2; (3) J ¼ 1.2�104 A/

cm2; (4) J ¼ 8�103 A/cm2; and (5) J ¼ 2�103 A/cm2 (after Jaque et al. [148]).
than for y ¼ 01 [148]. It is interesting to note that a similar critical
current anisotropy has also been predicted for a superconducting/
ferromagnetic bilayer with a 1D pinning potential created by a
stripe domain structure in the ferromagnetic layer [149].

However, the loss of periodicity along a in the line-geometry
produces a marked change in the periodic pinning as shown in
Fig. 10 [148]: in this case, no matching anomalies appear for
y ¼ 01 whereas for y ¼ 901 plateaus at equidistant field intervals
are observed in the r(B), instead of the minima characteristic of
pinning by the magnetic dot arrays. These matching plateaus are
typical of pinning of a soft vortex lattice by 1D periodic potentials
[150] such as superconducting/insulating superlattices. The
matching field extracted from these plateaus in the magnetore-
sistance curves is B1E700 G, which corresponds well with the
matching field for a triangular vortex lattice of periodicity 190 nm,
B1

triang
¼ (4/3)1/2 F0/(200 nm)2

¼ 660 G. Thus, it appears that
matching anomalies appear when intervortex distances match
the Ni lines width (d ¼ 200 nm) instead of the array periodicity
(matching to b ¼ 500 nm would give a much lower matching field
of 95 G only). These results indicate, that for vortex motion along
y ¼ 901, longitudinal correlations in the vortex lattice are smaller
than the line period and that pinning occurs predominantly at the
lines edges [148].
4.6. Phase diagram for square and rectangular arrays

of magnetic dots

From the analysis of the different periodic pinning regimes
described above, there are two geometrical parameters that appear
to control the observed behavior: the aspect ratio of the array cell
a/b, and the ratio between interdot separation and the super-
conducting coherence length (a�d)/x. The phase diagram shown in
Fig. 11, summarizes the various pinning regimes observed
experimentally in superconductors using arrays of magnetic dots
as pinning centers. The axes correspond to parameters a and b of
the array, expressed in units of the dot diameter d. The diagonal
corresponds to the case of square lattices a ¼ b with four-fold
symmetry, and the rest of the diagram to rectangular lattices with
only two-fold symmetry in which a/b is smaller or greater than 1.
Other important lines in the diagram correspond to: a ¼ d or b ¼ d

that mark the limit when the dots are touching and, a ¼ d+x or
b ¼ d+x that mark overlapping of pinning potentials between the
individual dots (see schematics in Fig. 11).

Thus, the parameter space is divided into several regions
(labelled A–F), that are symmetric along a ¼ b diagonal. In each,
the interaction between the vortex lattice and the periodic
potential created by the arrays of magnetic dots results in a
different pinning behavior, characterized by a different matching
field which can be calculated from the geometrical parameters of
the array (see Table 1):
�
 Region A corresponds to the weak pinning of a square lattice
with a matching field given by B1 ¼ F0/a2 and a small number
of matching anomalies.

�
 Region B is the ‘‘superconducting wire network’’ regime

produced by a square lattice of dots with overlapping pinning
potential wells. The matching field is again B1 ¼ F0/a2 but a
much larger number of matching peaks are observed up to the
critical field.

�
 Region C corresponds to physically touching dots, i.e. a

continuous magnetic film with a periodic array of antidots.
Pinning is provided by the closure domain pattern and the
domain walls in the magnetic film. Matching anomalies have
only been observed for perpendicularly magnetized films in
the remanent state.
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high
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�
 Region E is the equivalent to Region B but with a lower
symmetry and corresponds to the channelling regime in which
pinning potentials overlap along the shortest array distance
only. This is characterized by a different matching field
depending on vortex motion relative to the potential channels,
B0�

1 ¼ F0=ab and B90�

1 ¼ ð4=3Þ1=2F0=a2. In both regions D and E,
clear guiding of the vortex motion along channels in the
periodic pinning potential has been observed.

�
 Region F corresponds to the case of periodic arrays of magnetic

lines. The most relevant characteristic of this regime is the
strong critical current anisotropy between vortex motion
parallel and perpendicular to the lines (similarly as in regions
D and E). Matching anomalies only appear for vortex motion
across the lines with B1 ¼ (4/3)1/2 F0/d2 corresponding to
matching to the linewidth.

5. Distorted arrays of magnetic dots: asymmetric and
aperiodic pinning

So far we have discussed vortex dynamics and new phenom-
ena that appear with periodic pinning arrays of magnetic dots,
either regular (with six-fold (triangular) and four-fold (square)
symmetry) or distorted with only two-fold (rectangular) symme-
try. More recently, other types of ordered artificial pinning
potentials with further reduced symmetry have been subject of
research. Two systems are of particular interest: ordered arrays of
asymmetric magnetic particles (e.g. triangular instead of circular)
which provide a pinning potential with broken inversion
symmetry and quasiperiodic arrays of magnetic dots. The former
give rise to the so-called vortex ratchet effect; the latter may
induce quasiperiodic order in the vortex lattice with unexpected
long-range correlations, and implies enhanced critical currents.
These effects illustrate dramatically to what extent the dynamic
s induced by square and rectangular lattices of magnetic dots for the different
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and static properties of the vortex lattices can be manipulated
using ordered arrays of pinning centers. We briefly review below
some of the studies that deal with those effects.

5.1. Asymmetric pinning

Asymmetric pinning potentials are able to rectify AC driving
forces, leading to a new type of controlled vortex motion in which
the vortex lattice acquires a net velocity out of an unbiased (zero
time-averaged) alternate drive. This so-called ‘‘ratchet effect’’
[151] constitutes a unique model system in which nonequilibrium
properties of the vortex lattice can be investigated. Interestingly,
this effect has broad implications in many other fields within
Physics and Natural Sciences, which span from biological motors
[152] to Brownian motion [153].

Vortex ratchets were first investigated theoretically [154–160]
and, experimentally realized using asymmetric magnetic pinning
centers [35,36]. Fig. 12 shows the essential phenomenology,
observed in a superconducting Nb thin film with periodic arrays
of magnetic (Ni) nanotriangles (Fig. 12(a)). As discussed above,
application of a magnetic field B1 (‘‘matching’’ field) perpendicular
to the film plane leads to a situation in which there is one vortex
per magnetic pinning site in the array (inset of Fig. 12(b)). If an AC
electrical current of amplitude IAC is injected in-plane along the
base of the triangles, an AC Lorentz force FL is exerted on the
vortices, which points in the perpendicular direction. The pinning
potential with broken inversion symmetry along this direction
produced by the asymmetric shape of the pinning sites rectifies
the vortex motion: i.e. when the AC current amplitude (Lorentz
force) exceeds a critical value Ic the lattice is pushed back and
forth and therefore the vortex motion is easier in one direction
(say forward). Thus, the vortices acquire a net drift velocity
(forward) out of a zero-averaged AC drive. This drift velocity
(which is experimentally detected as a DC voltage VDC) first
increases as the amplitude of the AC drive is increased, until a
maximum is reached (see Fig. 12(b)). Further increase of the AC
drive amplitude results in a decrease of VDC, and finally the effect
vanishes completely in the same way as is observed for vortex
motion in symmetric potentials [62].

This vortex ratchet effect has attracted much attention
recently. In addition to the above-described system, vortex
ratchets have been experimentally realized in films with asym-
metric arrangements of ‘‘antidots’’ [161,162], square arrays of Cu
nanotriangles [163], Josephson junctions arrays [164], super-
conducting constrictions (induced by surface-barrier effects)
[165], asymmetric pinning produced with ion irradiation [166],
magnetized strips [167] or spacing-graded arrays of pinning
centers [168], in asymmetric-shaped mesoscopic superconductors
[169], and in films with arrays of magnetic dipoles [170,171]. The
phenomenology observed in these systems is very rich. It is
remarkable for instance that in some of them [35,36,162,166,172]
the ratchet effect is reversible (i.e. the sense of net vortex motion
or drift is reversed) depending on the density of the vortex lattice,
which is controlled by an external parameter (e.g. the applied
magnetic field). The origin of the ratchet reversal is a very active
research field, and different scenarios have been reported, for
instance interplay between interstitial and pinned vortices
[35,36,162,166], vortex-lattice reconfiguration [173], interplay
between the superconducting characteristic lengths and the
period of the asymmetric potentials [174], or vortex lattice
instability [175]. Interestingly, these ratchet reversal mechanisms
are common to general systems of interacting particles [176].
More subtle effects such as ‘‘transverse’’ rectification (in the
direction perpendicular to the driving force) have been also
explored theoretically [177] and experimentally [178]. Finally, a
different type of vortex ratchets have been recently realized in
high-TC superconductors, induced by time-asymmetric drives
[179] instead of spatially asymmetric pinning.
5.2. Quasiperiodic and fractal pinning

As discussed in Section 3, the interaction between the vortex
lattice and periodic arrays of pinning centers is stronger for
particular, well-defined vortex densities, for which commensur-
ability (‘‘geometrical matching’’) develops between the vortex
lattice and the array. These matching effects are critical, i.e. appear
as very sharp peaks (minima in the flux flow resistance or maxima
in the critical current, as opposed to plateaus) as a function of the
applied field. This suggests collective vortex pinning and implies a
high degree of order with long vortex-lattice correlation lengths.
However, commensurability effects between the vortex lattice
with arrays lacking periodic order (quasiperiodic and fractal arrays)
have been recently observed, implying in some cases that local
order is sufficient to induce critical matching. We review below
some of the most recent related studies.
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M. Vélez et al. / Journal of Magnetism and Magnetic Materials 320 (2008) 2547–25622558
Frustration in quasiperiodic and fractal superconducting net-
works was investigated earlier [180,181], but it was not until
recently that commensurability between Abrikosov vortex lattices
and quasiperiodic pinning potentials were studied theoretically
[182] and experimentally [33,34,183]. Numerical simulations
predicted commensurate states of the vortex lattice on one-
dimensional (1D) Fibonacci chains and Penrose lattices [182],
which manifest as peaks in the field dependence of the critical
depinning current. Interestingly, these results predicted that
enhanced pinning at well defined matching fields may originate
from local commensurability between the vortex lattice and
quasiperiodic arrays. This was also found in experiments on Nb
thin films with 2D Fibonacci arrays of magnetic dots [33,34]. In
these, commensurability originates from local matching situa-
tions repeated a number of times over the array, and do not imply
long vortex-lattice correlations. Experiments on Nb thin films
arrays of holes [183] and Pb and Al films with arrays of magnetic
dots [34] confirmed the predictions from numerical simulations
for Penrose lattices [182]. In addition [183], the background
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Fig. 13. (a) Scanning electron microscopy image of a pentagonal fractal

quasiperiodic array of Ni dots. The inset shows a higher magnification image

where self-similar pentagons are highlighted (blue and red). (b) Magnetoresis-

tance of a 100 nm thick Nb film on top of the array shown in (a), at T ¼ 0.985Tc and

J ¼ 1.5 kA cm�2. Vertical lines mark main minima. Inset: same curve as in (a)

zoomed out (after Villegas et al. [33]).
pinning (at fields different from matching) from Penrose arrays
exceeds that from similarly dense periodic and disordered arrays
of defects, as well as from the intrinsic defects in the films. Thus,
these quasiperiodic arrays may be a useful avenue to increase
critical currents in a broad range of applied fields.

A very striking behavior is observed in films with quasiperiodic

fractal arrays [33], as the one shown in Fig. 13. This pentagonal
array is self-similar at all length scales and shows inflation
symmetry, and thus it has some similarities with periodic arrays.
Interestingly, the magnetoresistance shows deep minima (com-
parable to those in periodic arrays), as well as a very rich fine
structure [Fig. 13(b)]. The quasiperiodic series of minima implies
that the lattice adopts the pentagonal symmetry of the array at
different length scales. The long period magnetoresistance
oscillations imply matching to the array geometry over the length
scale of the interdot distance [smaller (blue) pentagons in
Fig. 13(a)], while the shorter period corresponds to commensur-
ability over longer length scales [that of the larger (red) pentagons
in Fig. 13(a), and self-similar scaled-up units in the array]. These
results imply that a quasiperiodic fractal vortex lattice is stabilized
with remarkably long correlations, even if the lattice distortion
with respect to its natural periodic order must have an adverse
increase of elastic energy. Further theoretical work is needed to
understand this unexpected behavior.
6. Future outlook

Although much was done, as outlined above, this field is
extremely rich in possibilities. Many opportunities are available
and should produce interesting new results since all the relevant
parameters can be controlled at will. Here, we will outline a few
examples of possible research directions, which are expected to
produce new and interesting physics.
6.1. Order– disorder effects in the vortex lattice

The interaction between the vortex lattice and periodic arrays
of pining centers is stronger (leading to enhanced critical
currents) for well-defined vortex densities. For these, commensur-
ability develops between the vortex lattice and the array implying
a high degree of order with long vortex-lattice correlation lengths.
However, as reviewed in Section 5.2, commensurability effects
have also been observed on arrays with only local order but
lacking periodic order (quasiperiodic [33,34,182–184] and fractal
arrays [33]) and with nonperiodic long-range order [33]. More-
over, matching effects have been recently observed in some
systems with only short-range periodic pinning [185]. Clearly,
further investigation is needed to clarify this confusing situation.
Besides the particular interest within vortex physics, this issue is
relevant for a variety of physical systems that span from epitaxy
[186], to the physics of colloids [187] or other elastic media on
fixed periodic potentials [142], for which vortex lattices on
artificial pinning constitute a model system where to investigate
the general problem of commensurability. Compared with these
other physical systems, superconducting vortex lattices have the
advantage that their density can be manipulated readily and
reversibly via the external magnetic fields.

Thus, the crucial, largely unexplored question for all types of
matching phenomena is how robust such commensurate states
are against the introduction of disorder in the pinning array. This
disorder can be structural (i.e. in the geometry of the pinning
structures), magnetic (in the magnetic history of the pinning dots)
or even dynamical (due to the effect of externally applied noise of
various types).
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6.2. Nonequilibrium effects in the vortex lattice and

asymmetric pinning

As reviewed in Section 5.1, certain types of asymmetric pinning
potentials are able to rectify AC driving forces, leading to a new
type of controlled vortex motion in which the vortex lattice
acquires a net velocity driven by an unbiased (zero time-averaged)
alternate drive [35,36,162,164–166,172,179,188–190]. This so-
called ‘‘ratchet effect’’ offers a unique system in which none-
quilibrium properties of the vortex lattice can be investigated.
Interestingly, in some systems the ratchet effect changes
sign as the applied field increases [35,172], i.e. the effective
asymmetry of the pinning potential depends on the vortex-lattice
density. Some models explain this behavior in terms of the
opposite asymmetry felt by a probe vortex depending on its
position with respect to the asymmetric pinning centers
(interstitial or directly on top of them) [35,176,191]. Others
conclude that the whole lattice moves coherently and the
sign change in the rectification arises from a vortex-lattice
re-orientation as its density is changed [173,175]. This issue could
be investigated by changing the geometry of the array of
asymmetric pinning centers in a controlled way, to favor certain
lattice rotations (or alternatively interstitial vortex distributions).
This will allow identifying the origin of the observed vortex
density-dependent rectification.

A worthwhile avenue of research is the preparation of ratchet
potentials induced by ‘‘surface barriers’’ [165,189], as opposed to
inducing them with asymmetric pinning centers distributed
within the bulk of superconductors. It is well known that the
entrance/exit of vortices in a superconducting film is governed by
different surface barriers (such as Bean–Livingston or geometric
barriers [192]). It is expected that vortex dynamics in narrow
superconducting constrictions (a few times l) will be dominated
by such surface effects. Thus, simple ratchets could be obtained by
manufacturing a narrow strip with differing surfaces (for instance
crooked vs. sharp edges).

Finally, an interesting issue that has just began to be explored
is the influence of the magnetic state of the asymmetric pinning
centers [37,38,171] on the ratchet effect. This could provide a good
tool to adjust the strength of the asymmetric potential in a single
sample.

6.3. Frequency dependence of periodic pinning

A very important consequence of the interaction between the
vortices and ordered potentials is the occurrence of collective
pinning of the entire vortex lattice, implying coherent motion of
the lattice as a whole [25]. An issue that remains unexplored is
how robust is this coherent motion against the effect of high-
frequency drives. For appropriate combinations of AC drive
amplitude and frequency vortices would oscillate within their
pinning potential wells, while for some others they would be able
to hop from pinning site to pinning site within the period of the
oscillation. If different vortices in the lattice are subject to
different pinning strengths (for instance, vortices directly on the
pinning sites or in interstitial sites [112]) the binding potential
wells might be different. Consequently, if they are forced to
oscillate by AC drives, one may expect regimes in which some
vortices would remain pinned while others would depin. This may
lead to a situation in which the lattice breaks into two sublattices
as a function of the frequency of the AC drive. Moreover, this effect
may be enhanced by the presence of different resonant frequen-
cies for different vortices in the lattice, depending upon their
position with respect to the pinning array. An ideal technique to
perform this experiment, in addition to AC magnetotransport, is
frequency-dependent AC susceptibility [193].
6.4. Periodic magnetic pinning in confined geometries

Boundary conditions play a major role in condensed matter
physics in general and in particular in mesoscopic superconduct-
ing structures whose sizes are a few times the relevant length
scales x and l. Research in mesoscopic superconducting disks has
shown that confinement induces dramatic effects on the vortex
matter [194–198]. Changes may appear in the vortex phase
transitions [199,200] and vortex-lattice geometry, for instance
‘‘rings ‘‘or ‘‘shells’’ as opposed to the usual triangular Abrikosov
lattice. Moreover, theoretical studies predict that a magnetic
nanodot on top of a mesoscopic superconductor can enhance
superconductivity in hybrid structures [201] and can enforce or
even induce symmetry-consistent vortex–antivortex molecules
[202,203]. These predictions have been recently confirmed
experimentally [204].

Therefore, a number of opportunities exist in the research of
mesoscopic superconductors (disk or strips of sizes a few times
the superconducting x and l) with different types of ordered
arrays of pinning centers. Investigating the interplay between
periodic pinning with confinement effects, and how it affects
the stabilization of different vortex arrangements and the
changes in the phase diagram will surely produce new interest-
ing results. These studies can be done in a variety of geometries
both for the confinement and the pinning sites, thus allowing
studies of the relative competition between these types of
effects.

Interestingly, these experiments have relevance in fields as far
removed as plasma physics, where ordered vortices appear in for
instance cylindrical symmetric charged plasmas [205–207]. These
charged plasmas are considered to be classical and therefore
quantum effects are not expected to play a major role.
A comparison of results in superconductors with those found in
these charged plasmas may allow investigating quantum effects
on vortex physics.

6.5. Ordered magnetic pinning arrays and HTSC

Up to this point, most work has focused towards under-
standing the effect that the pinning arrays have on the vortex
physics and towards engineering novel situations and geometries
of the pinning array which produce perhaps a-priori unexpected
results. The particular superconductor under study played a minor
effect. Its main role is to control the important relevant super-
conducting characteristic length scales (x and l) without much
change in the underlying physics. HTSC on the other hand open up
a whole new avenue of research. The main reason for this is that
HTSC exhibit a variety of vortex phases not present in LTSC
(including vortex liquid, Bose or Bragg glasses) [208,209] due to
the interplay between anisotropy, thermal fluctuations, and
different kinds of disorder [2].

While disordered pinning (point and extended defects) has
been thoroughly investigated in HTSC [2], only a few groups have
investigated vortex dynamics with ordered pinning (in particular
ordered arrays of ‘‘antidots’’) in these materials [210–212]. In
addition, magnetic pinning in YBa2Cu3O7 films has been demon-
strated using a magnetic recording tape to induce a periodic
potential in the vortex lattice with a several micron period
[18,121,213,214]. Fabrication of regular arrays of submicrometric
magnetic pinning centers is more complicated for HTSC [47]
because the growth conditions of these complex oxides are
usually incompatible with most standard nanofabrication techni-
ques, as opposed to LTSC metals. However, HTSC such as the
REBa2Cu3O7�d family (RE ¼ rare earth) have some unique proper-
ties, which are unavailable in LTSC, that make the study of
vortex dynamics with ordered artificial centers potentially very
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interesting. First, coherence and penetration length differ by
several orders of magnitude [2,215]. Second, these layered HTSC
compounds exhibit an intrinsic anisotropy which can be tailored
by changing the oxygen content [2,216]. This together with large
thermal fluctuations give rise to a rich variety of vortex phases
[2,208] (vortex liquid, solid, glass, etc). Third, the intrinsic
(disordered) pinning in HTSC thin films can be manipulated with
substitutions of the ions [217,218], changes in the growth
conditions (substrate, growth temperature, etc.), or even by ion
irradiation [219]. Fourth, it is possible to epitaxially grow
homostructural analogs with high structural quality using
insulating (like PrBa2Cu3O7�d) [220,221] or magnetic oxides (like
La0.67Ca0.33MnO3) [222]. Fifth, illumination by (spatially localized
or global) light irradiation allows modifying the superconducting
properties substantially [223,224]. These characteristics make
investigation of these materials in conjunction with nanostruc-
tured pinning arrays quite attractive.

An important goal is separating pinning induced by local
superconductivity suppression from pinning induced by magne-
tostatic interactions between vortices and stray magnetic
fields. The superconducting coherence length x is the relevant
length scale for the former mechanism, while the penetration
length l is relevant for the latter. Since these characteristic lengths
are very different in HTSC, these are ideal materials to address this
issue. Moreover, experiments could be done in which the
magnetic state of the dots could be modified to induce changes
on vortex pinning [42]. Especially interesting is the case in which
dots are in the so-called ‘‘magnetic vortex state’’ [84,225], in
which magnetization lies in-plane curling around the center of the
dot and points out-of-plane (up or down) at the ‘‘vortex core’’. The
orientation of these cores can be manipulated with external DC
or AC applied magnetic field [215], and so, if magnetostatic
interactions are important, the pinning landscape for super-
conducting vortices could be tuned by an external parameter
[85–87].

Moreover, the rich variety of vortex phases exhibited by HTSC
thin films [2,208], provides an interesting play ground for studies
related to vortex phases and order–disorder competition. Some
work has been done in LTSC [64], but the effect of ordered pinning
on the stabilization of these different phases has not been
experimentally investigated [219] in HTCS.

Finally, HTSC provide the ideal materials to weight vortex
interactions and correlations: high upper critical fields (short
coherence lengths) and much longer penetration lengths allow
exploring regimes that span from low density vortex lattices with
negligible vortex–vortex interactions to very dense lattices
(as compared with the array of pinning centers) with strong
inter-vortex interactions.

7. Summary

It is clear that the field of superconducting vortex pinning
using artificial pinning structures is a very rich and fruitful area of
research. Although considerable research has been done in the
last 10 or so years, much remains to be done. This provides the
ideal model system for the interaction of soft elastic with rigid
lattices. The reason for this is that most if not all the parameters
that are relevant to the physics can be manipulated and controlled
at will through combined growth, lithography and external
driving forces.
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